10.2 Start Thinking

Use a graphing calculator to graph $y = \sqrt[3]{x}$. Describe the shape of the graph. Compare the graph to that of $y = \sqrt{x}$.

Describe the domain and range of the function. Explain why the range differs from that of the function $y = \sqrt{x}$. Explain how you could use the graph of $y = \sqrt[3]{x}$ to find the side length of a cube when you know the volume.

10.2 Warm Up

Graph the function.

1.
$$g(x) = \frac{2}{3}\sqrt{x}$$

3.
$$p(x) = \sqrt{-\frac{1}{5}x}$$

5.
$$g(x) = \sqrt{x-2}$$

2.
$$h(x) = \sqrt{x-4}$$

4.
$$m(x) = -\sqrt{x} + 5$$

6.
$$v(x) = \sqrt{\frac{x}{12}}$$

10.2 Cumulative Review Warm Up

Tell whether the ordered pair is a solution to the system of linear inequalities.

1.
$$(-4, 1)$$
; $y > 5$ $y < x - 2$

3.
$$(0, 0)$$
; $y < -1$
 $y < x + 4$

2.
$$(1, -1)$$
; $y \ge x - 8$ $y \le x - 4$

4.
$$(5, -4)$$
; $y \ge x - 1$ $y \ge 8x + 1$

10.2

Practice A

In Exercises 1-3, graph the function. Compare the graph to the graph of $f(x) = \sqrt[3]{x}.$

1.
$$g(x) = \sqrt[3]{x-3}$$
 2. $g(x) = \sqrt[3]{x} + 1$ **3.** $g(x) = 2\sqrt[3]{x}$

2.
$$g(x) = \sqrt[3]{x} + 1$$

3.
$$g(x) = 2\sqrt[3]{x}$$

In Exercises 4 and 5, compare the graphs. Find the value of h, k, or a.

5.

In Exercises 6-11, graph the function. Compare the graph to the graph of $f(x) = \sqrt[3]{x}.$

6.
$$g(x) = -\sqrt[3]{x+1}$$

7.
$$g(x) = -\sqrt[3]{x} - 2$$

6.
$$g(x) = -\sqrt[3]{x+1}$$
 7. $g(x) = -\sqrt[3]{x} - 2$ **8.** $g(x) = 4\sqrt[3]{x-2}$

9.
$$g(x) = 0.1\sqrt[3]{x+4}$$
 10. $g(x) = 2\sqrt[3]{x} + 1$ **11.** $g(x) = \sqrt[3]{-x} + 3$

10.
$$g(x) = 2\sqrt[3]{x} + 1$$

11.
$$g(x) = \sqrt[3]{-x} + 3$$

In Exercises 12–15, describe the transformations from the graph of $f(x) = \sqrt[3]{x}$ to the graph of the given function. Then graph the function.

12.
$$g(x) = \sqrt[3]{x+2} - 3$$

13.
$$g(x) = \sqrt[3]{x-3} + 1$$

14.
$$g(x) = -4\sqrt[3]{x-1} - 2$$

15.
$$g(x) = 3\sqrt[3]{x+6} + 2$$

16. Describe and correct the error in graphing the function $f(x) = \sqrt[3]{x} - 2$.

10.2 **Practice B**

In Exercises 1-3, graph the function. Compare the graph to the graph of $f(x) = \sqrt[3]{x}.$

1.
$$g(x) = \sqrt[3]{x+4}$$

1.
$$g(x) = \sqrt[3]{x+4}$$
 2. $g(x) = \sqrt[3]{x} - 2$ **3.** $g(x) = \sqrt[3]{\frac{1}{3}x}$

3.
$$g(x) = \sqrt[3]{\frac{1}{3}x}$$

In Exercises 4 and 5, compare the graphs. Find the value of h, k, or a.

In Exercises 6-11, graph the function. Compare the graph to the graph of $f(x) = \sqrt[3]{x}.$

6.
$$g(x) = -\sqrt[3]{x-3}$$

7.
$$g(x) = 3\sqrt[3]{x+2}$$

6.
$$g(x) = -\sqrt[3]{x-3}$$
 7. $g(x) = 3\sqrt[3]{x+2}$ **8.** $g(x) = 2\sqrt[3]{x} - 5$

9.
$$g(x) = 0.2\sqrt[3]{x+1}$$

10.
$$g(x) = \sqrt[3]{-4x} + 1$$

9.
$$g(x) = 0.2\sqrt[3]{x+1}$$
 10. $g(x) = \sqrt[3]{-4x} + 1$ **11.** $g(x) = \sqrt[3]{2(x-1)}$

In Exercises 12–15, describe the transformations from the graph of $f(x) = \sqrt[3]{x}$ to the graph of the given function. Then graph the function.

12.
$$g(x) = \sqrt[3]{x+4} - 2$$

13.
$$g(x) = 5\sqrt[3]{x-2} + 3$$

14.
$$g(x) = -\frac{1}{2}\sqrt[3]{x-3} - 2$$

15.
$$g(x) = \frac{4}{3}\sqrt[3]{x+5} + 2$$

16. Describe and correct the error in graphing the function $f(x) = -\sqrt[3]{x+3}$.

Enrichment and Extension

Graphing Cubic Functions

Example: Use transformations to graph the cubic function $y = -(x - 3)^3 + 2$.

Graph by reflecting the function $y = x^3$ in the x-axis and then shifting the graph right 3 units and up 2 units. The central point of the graph is now (3, 2).

Graph the cubic function using the rules of transformations.

1.
$$y = -x^3$$

2.
$$y = x^3 - 1$$

3.
$$y = -x^3 - 5$$

4.
$$y = \frac{1}{2}x^3 + 3$$

4.
$$y = \frac{1}{2}x^3 + 3$$
 5. $y = 2(x+2)^3 - 3$ **6.** $y = 3(x-5)^3$

6.
$$y = 3(x - 5)^3$$

7.
$$y = -(x-1)^3 + 3$$

8.
$$y = (x + 5)^3 - 4$$

7.
$$y = -(x-1)^3 + 3$$
 8. $y = (x+5)^3 - 4$ 9. $y = \frac{(x-2)^3}{3} + 4$

Name	Date
------	------

What Does A Dog Get When He Finishes Obedience School?

Write the letter of each answer in the box containing the exercise number.

Describe the transformation(s) from the graph of $f(x) = \sqrt[3]{x}$ to the graph of the given function.

1.
$$g(x) = \sqrt[3]{x+5}$$

2.
$$p(x) = \sqrt[3]{x} - 9$$

3.
$$b(x) = \frac{1}{6}\sqrt[3]{x}$$

4.
$$s(x) = \sqrt[3]{2x}$$

5.
$$d(x) = \sqrt[3]{-x}$$

6.
$$v(x) = -\sqrt[3]{x-7}$$

7.
$$j(x) = \sqrt[3]{-0.25x} - 6$$

8.
$$h(x) = \frac{1}{3}\sqrt[3]{x} + 12$$

9.
$$c(x) = -8\sqrt[3]{x} + 1$$

10.
$$k(x) = \sqrt[3]{-\frac{1}{4}x} - 14$$

Answers

- **E.** horizontal shrink by a factor of $\frac{1}{2}$
- **A.** translation 9 units down
- **R.** reflection in the y-axis
- **E.** translation 5 units left
- **T.** vertical shrink by a factor of $\frac{1}{6}$
- **E.** reflection in the *x*-axis; vertical stretch by a factor of 8; translation 1 unit up
- **G.** reflection in the *y*-axis; horizontal stretch by a factor of 4; translation 6 units down
- **D.** reflection in the *y*-axis; horizontal stretch by a factor of 4; translation 14 units down
- **P.** vertical shrink by a factor of $\frac{1}{3}$ translation 12 units up
- **E.** reflection in the *x*-axis; translation 7 units right

