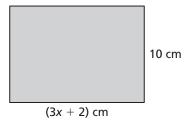


Business A buys an item at a price of \$175 for 50 units. The business pays a shipping company \$0.49 per item to transport the items to its store. The retail price is \$4.99 per each unit.

If Business A needs to make at least a \$1500 profit to meet its goal, how could you set up an inequality to represent this situation?

Solve the equation.

- **1.** 13v 9v 15 = 77 **2.** 8c + 7 + 3c = -15
- **3.** 3(z-6) = 30 **4.** 8 4(2m-2) = 24
- **5.** -3(7g + 2) = 36 **6.** -5h 3(10 + h) = -6


2.4 Cumulative Review Warm Up

Solve the literal equation for y.

- **1.** 2y + 2x = 14**2.** y + 19x = -27**3.** 10x + y = 47**4.** 3x + 6 = 6 5y
- **5.** $1 \frac{2}{5}y = 4x 3$ **6.** 2y = 3x - 9x

- **a.** Write and solve an inequality to find the possible values of *x*.
- b. Based on the answer in part (a), is it possible for the rectangle to have a length of 15 centimeters? Explain.

Date

2.4 Practice B

In Exercises 1–3, match the inequality with its graph.

In Exercises 4–9, solve the inequality. Graph the solution.

 4. 6 < -5t - 4 5. $\frac{m}{4} + 2 < 3$ 6. $5 + \frac{k}{-2} \ge 2$

 7. $\frac{d}{-6} + 7 < 11$ 8. 4 < -2(y + 3) 9. $24 \ge 6(w - 2)$

In Exercises 10–15, solve the inequality.

- **10.** -5n 4 > 7n + 20**11.** 4k 6 < 3k + k 1**12.** $10h 3h + 6 \ge 11 + 7h$ **13.** $6(t 1) \le 2(3t 5)$ **14.** 12(x 2) > 3(4x 8)**15.** $6\left(\frac{1}{3}d + 4\right) > 2(d + 12)$
- **16.** You must maintain a minimum balance of \$50 in your checking account. You currently have a balance of \$280.
 - **a.** Write and solve an inequality that represents how many \$20 bills you can withdraw from the account without going below the minimum balance.
 - b. Your bank charges an ATM fee of \$2.50, which is charged each time you withdraw \$20. Write and solve an inequality that represents how many \$20 bills you can withdraw from the account without going below the minimum balance in this situation.

2.4 Enrichment and Extension

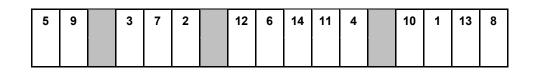
Methods of Describing Sets

Set-builder notation and *interval notation* are both mathematical shorthands that describe a set of numbers. They are frequently used in higher mathematics and are very useful. Set-builder notation is a quick way to state all the numbers and properties of a specific set, while interval notation is a representation of an interval as a set of numbers.

Example: Write the inequalities in interval notation and set-builder notation: x < 0 or $3 \le x < 7$.

Set-builder notation	Interval notation	
\mathbb{R} stands for all real numbers.	(Represents "not included" or "open."	
\mathbb{Z} stands for integers.	[Represents "included" or "closed."	
∈ stands for "is an element of."	∞ Is always expressed as "not included."	
stands for "such that."	\bigcup Stand for "union" which replaces the word "or."	
$x < 0$ or $3 \le x < 7$ is written as	$x < 0$ or $3 \le x < 7$ is written as	
$\{x \in \mathbb{R} \mid x < 0, 3 \le x < 7\}.$	$(-\infty, 0) \cup [3, 7).$	

Express the inequality or inequalities in both set-builder notation and interval notation. Then, if not graphed, graph each on a number line.



Where Do Young Tigers Swim?

Write the letter of each answer in the box containing the exercise number.

Solve the inequality.

1.	4x - 7 < 9	2. $-11 > 10 - 7x$	Answers
•	<i>x</i>	X . 10 > 14	N. all real numbers
3.	$\frac{x}{6} + 5 > 8$	4. $-\frac{x}{2} + 12 \ge 14$	K. $x \ge 7$
5.	6x - 23 > 25	6. $6 - \frac{x}{5} \ge -2$	P. <i>x</i> < 8
7	$3 \geq -3(x-13)$	8. $16 - 4x > 9 - 5x$	E. <i>x</i> > 3
			O. <i>x</i> < 4
9.	$2x + 7 \le 2x + 8$	10. $-6(x-1) < -14(x-5)$	I. $x > 8$
11.	$. 12x + 4x - 11 \ge 16x + 17$		O. $x \ge 40$
12.	$3(1-x) + 10x \le 9(x-2) + 7$		Y. $x \le -4$
13.	The students in charge of	T. $x > 4$	
	to earn \$3 for every item to make the items. Solve t	L. $x > -7$	
	represents how many item least \$65.	T. no solution	
14.	A triangle has a base of 14 centimeters and a height of $(3x - 4)$ centimeters. The area of the triangle is greater than 56 centimeters.		H. $x \ge 12$
			I. $x \le 40$
	Solve the inequality $\frac{1}{2}(14)(3x - 4) > 56$ to find the possible		T. <i>x</i> > 18
	values of <i>x</i> .	l	

I

Date