3.2 Start Thinking

Plot the following points in a coordinate plane.

$$(-5, 2), (-4, 0), (-3, -2), (-2, -4)$$

Connect the points with a line. Name another point on the line.

Is the point (1, -2) on the line? How do you know? If (1, -2) is part of the relation, is it a function? Why or why not?

3.2 Warm Up

Plot the coordinates from the table in a coordinate plane. Connect them with a line or smooth curve.

1.	x	1	2	3	4
	у	4	8	12	16

2.	x	3	4	5	6
	у	2	1	0	-1

3.	x	4	4	4	4
	y	2	3	4	5

4.	x	5	6	7	8
	y	35	28	29	31

3.2 Cumulative Review Warm Up


Solve the literal equation for *x*.

1. y = 5x - 7x2. a = 3x - 5xz3. y = 5x - rx - 54. sx - tx = r5. c = 84x - 616. m = 9x + x

3.

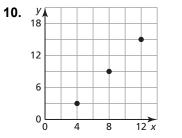
3.2 Practice A

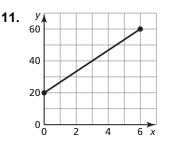
In Exercises 1 and 2, determine whether the graph represents a *linear* or *nonlinear* function. Explain.

In Exercises 3 and 4, determine whether the table represents a *linear* or *nonlinear* function. Explain.

	0	1	2	3	4.	x	1	4	7	
y	3	5	7	9		y	2	5	6	

In Exercises 5–8, determine whether the equation represents a *linear* or *nonlinear* function. Explain.

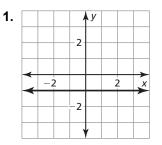

5. $y = \sqrt{x} + 5$ 6.	y = 4x - 2
--	------------

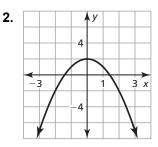

7.
$$y = 9 - x$$

8. $y = (x - 1)(x + 7)$

9. Fill in the table so it represents a linear function.

x	4	8	12	16	20
у	-4				12


In Exercises 10 and 11, find the domain of the function represented by the graph. Determine whether the domain is *discrete* or *continuous*. Explain.



3.2 Practice B

In Exercises 1 and 2, determine whether the graph represents a *linear* or *nonlinear* function. Explain.

In Exercises 3 and 4, determine whether the table represents a *linear* or *nonlinear* function. Explain.

4.

3.	x	0 2		4	6	
	у	3	9	27	81	

x	14	24	34	44
y	24	20	16	12

In Exercises 5–8, determine whether the equation represents a *linear* or *nonlinear* function. Explain.

5.	$y - \frac{1}{3}x = 4x - 7$	6.	$6 - \frac{2}{5}x = 3y + 8x$
7.	(y+2)(y-4) = 3x	8.	4x - 5y + 2xy = 0

In Exercises 9 and 10, determine whether the domain is *discrete* or *continuous*. Explain.

9.	Input Months, <i>x</i>	1	2	3
	Output Height of basil plant (inches), <i>y</i>	3	7	11

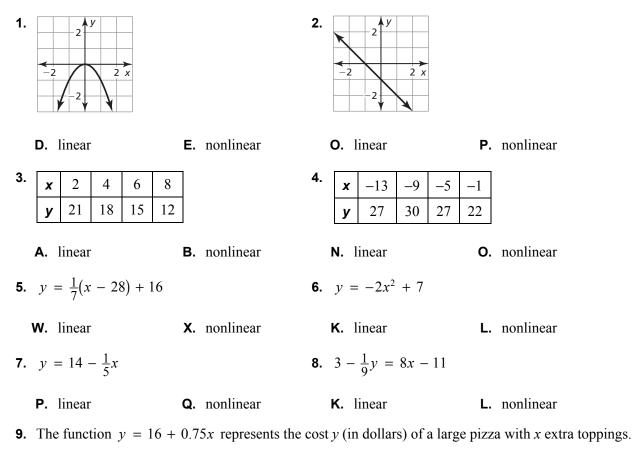
10.

Input Tickets, <i>x</i>	10	20	30
Output Cost (dollars), <i>y</i>	60	120	180

3.2 Enrichment and Extension

Linear Functions: Taking a Taxi

You take a trip to downtown Boston to walk the Freedom Trail with your family. After you walk through the Bunker Hill Memorial, your family decides to take a taxi to a restaurant for dinner. After 1 mile, the meter on the taxi says \$4.75. It will cost \$8.25 to go 3 miles. The cost varies linearly with the distance that you traveled.


- **a.** Write the particular linear function that models the cost of your trip as a function of the distance traveled. Use the notation C(d).
- **b.** Write the function using improper fractions.
- c. How much would it cost you to travel 10 miles in a taxi?
- d. How far can you travel if you only have \$10 to spend?
- e. Calculate the cost-intercept. What does this number represent?
- **f.** Plot the graph of this linear function. What is a suitable domain for this problem? What is a suitable range?
- **g.** What is the slope of the line? Show how to find it both graphically and algebraically.
- **h.** What does the slope of the line represent?
- **i.** Write your own linear function word problem, and prove that it works graphically and algebraically.

What Do You Get When You Cross A Tortoise And A Porcupine?

Write the letter of each answer in the box containing the exercise number.

Determine whether the graph, table, or equation represents a linear or nonlinear function.

S. linear **T.** nonlinear

3	9	6	2	5	7	4	8	1