4.4 Start Thinking

Sketch a coordinate plane, showing only the first quadrant. Draw line q with any positive slope, horizontal line r, and line s with any negative slope.

Describe what happens to the *y*-values as the *x*-values increase for each line. Give an example of one real-life situation that represents each type of slope.

Use the graph to write an equation of the line in slope-intercept form.

Cumulative Review Warm Up

Graph the linear equation. Identify the *x*-intercept.

 1. y = x - 5 2. y = 3x

 3. 2x - 2y = -2 4. y - 3x = 1

Copyright © Big Ideas Learning, LLC All rights reserved.

4.4 Practice A

1. The scatter plot shows students' scores for Quiz 1 and Quiz 2.

- **a.** What is the Quiz 1 score for a student who earned a score of 13 on Quiz 2?
- **b.** Did any student(s) earn the same score on both Quiz 1 and Quiz 2? Explain.
- **c.** Does there appear to be a difference between the Quiz 1 scores and the Quiz 2 scores? Explain.

In Exercises 2 and 3, tell whether *x* and *y* show a *positive*, a *negative*, or *no* correlation.

4. The table shows the number y of pineapple plants in a garden x years since 2004.

x	2	3	4	7	8	9
У	4	7	9	15	16	19

- **a.** Write an equation that models the approximate number of pineapple plants as a function of the number of years since 2004.
- **b.** Interpret the slope and *y*-intercept of the line of fit.

4.4 Practice B

1. The scatter plot shows the prior bowling averages of competitors at the bowling tournament and their highest scores during the tournament.

- **a.** How many competitors bowled above their average during the tournament?
- **b.** Did any bowler(s) bowl their average as their highest score? Explain.
- **c.** What are the scores of the competitors with the greatest difference between their bowling average and their highest score?

In Exercises 2 and 3, tell whether *x* and *y* show a *positive*, a *negative*, or *no* correlation.

4. The table shows the total number *y* of rolls of wrapping paper sold by a student after *x* weeks.

x	1	2	3	4	5	6
У	3	5	9	12	17	24

- **a.** Write an equation that models the number of rolls of wrapping paper as a function of the number of weeks.
- **b.** Interpret the slope and *y*-intercept of the line of fit.

4.4 Enrichment and Extension

Correlation Coefficient

In data analysis, there is a useful number called the *correlation coefficient*. This number gives a measure of how well a group of data is clustered around a line of best fit. If the data points are clustered closely around a line with positive slope, then the correlation coefficient r is close to 1. The value of r is close to -1 when the data points are clustered closely around a line with negative slope. If there is no close correlation, then the value of r is close to 0.

How to calculate the correlation coefficient:

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{\left[n\sum x^{2} - (\sum x)^{2}\right]\left[n\sum y^{2} - (\sum y)^{2}\right]}}$$

In Exercises 1 and 2, use the formula to find the correlation coefficient for the set of data.

1. age of Labrador puppies vs. weight

Weeks	Weight (pounds)					
0	0.8					
1	1.2					
2	2					
3	5					
4	6.5					
5	8					
6	10.7					
7	12.5					

2. hours studying vs. grade on exam

Hours	Grade
1	75
1	69
2	80
2	81
2	78
3	86
3	71
4	89

On What Day Do Spiders Eat The Most?

Write the letter of each answer in the box containing the exercise number.

Using a scatter plot of the data, tell whether x and y show a positive, a negative, or no correlation.

- (-3, -2), (-2, 0), (-1, 1), (0, 0), (0, 1), (0, 2), (1, 2), (2, 3)
 A. positive correlation
 B. negative correlation
 C. no correlation
 (-2, 5), (-1, 3), (-1, 4), (0, 2), (0, 4), (1, 2), (2, 1), (3, 0)
 X. positive correlation
 Y. negative correlation
 Z. no correlation
 (-3, 4.5), (-2, 4), (-2, 3), (-1, 3), (-1, 2), (0, 0), (0, 1), (2,-1)
 K. positive correlation
 L. negative correlation
 M. no correlation
 (-3, 0), (-3, -4), (-2, -2), (-2, 2), (0, 0), (1, -3), (2, -2), (3, 2)
 B. positive correlation
 C. negative correlation
- **5.** The table shows the daily ticket sales of the latest movie. Using a scatter plot of the data, write an equation that models ticket sales as a function of the number of days that the movie has been in theaters.

Days, <i>x</i>	1	2	3	4	5	6	7	8
Sales (millions), y	18	17	15	13	12	9	6	4
E . $y = -2x - 20$			F.	<i>y</i> =	-2x	+ 2	0	

6. The table shows the number of vehicles *y* that were cleaned at the car wash *x* hours since the car wash opened. Using a scatter plot of the data, write an equation that models the number of vehicles as a function of the number of hours since the car wash opened.

Hours, <i>x</i>	1	3	4	6	7	8	9	12
Vehicles, y	2	4	4	7	8	10	11	13

W.	у	=	x	_	1	
----	---	---	---	---	---	--

X. y = -x + 1

Y. y = x + 1

5	3	6	4	1	2