Start Thinking

Use work at a photo processing facility. The price for processing 50 photos or fewer is \$0.35 per photo. If a customer wants more than 50 photos, the cost is \$18.00 plus \$0.29 per photo.

The situation described above can be thought of as two separate equations. Write a linear equation for each, specifying the domain.

Warm Up

Evaluate the function.

1.
$$f(x) = 6x + 2$$
, if $x = -3$ **2.** $g(x) = 3x + 4$, if $x = 3$

$$\mathbf{II} \quad \mathbf{J} \left(\mathbf{x} \right) = \mathbf{0} \mathbf{x} + \mathbf{2}, \, \mathbf{II} \, \mathbf{x} =$$

3. v = x + 5, if x = 3

2.
$$g(x) = 3x + 4$$
, if $x = 3$

4.
$$y = -3x$$
, if $x = -2$

5.
$$f(x) = 4x + 3$$
, if $x = -3$ **6.** $g(x) = 5x + 3$, if $x = 5$

Cumulative Review Warm Up

Graph and compare the two functions.

1.
$$f(x) = |x| - 3$$
; $g(x) = |x| - 7$

2.
$$s(x) = |3x + 4| + 7$$
; $t(x) = |x + 4| + 7$

3.
$$v(x) = -|2x - 2| - 3$$
; $w(x) = 4|2x - 2| + 5$

4.
$$c(x) = 5|x-2|+2$$
; $d(x) = -\frac{3}{4}|x-2|-2$

Practice A

In Exercises 1-6, evaluate the function.

$$f(x) = \begin{cases} 2x + 3, & \text{if } x < 0 \\ x - 5, & \text{if } x \ge 0 \end{cases}$$

1. f(-2)

3. f(1)

4. f(0)

5. $f(-\frac{1}{2})$

- **6.** f(10)
- 7. On a trip, the total distance (in miles) you travel in x hours is represented by the piecewise function

$$d(x) = \begin{cases} 55x, & \text{if } 0 \le x < 1.5\\ 82.5, & \text{if } 1.5 \le x < 4.\\ 82.5 + 320(x - 4), & \text{if } x \ge 4 \end{cases}$$

if
$$0 \le x < 1.5$$

if
$$1.5 \le x < 4$$
.

$$82.5 + 320(x - 4), \text{ if } x \ge 4$$

- **a.** How far did you travel in 1.5 hours? 3 hours? 4.5 hours?
- **b.** Write a real situation that could be represented by this piecewise function.

In Exercises 8-11, graph the function. Describe the domain and range.

8.
$$f(x) = \begin{cases} -x, & \text{if } x < 3 \\ x + 4, & \text{if } x \ge 3 \end{cases}$$

9.
$$f(x) = \begin{cases} -3x, & \text{if } x \le -1 \\ 3x, & \text{if } x > -1 \end{cases}$$

10.
$$f(x) = \begin{cases} x + 6, & \text{if } x < -2 \\ -2x, & \text{if } x \ge -2 \end{cases}$$

11.
$$f(x) = \begin{cases} -x + 2, & \text{if } x < 0 \\ x - 2, & \text{if } x \ge 0 \end{cases}$$

In Exercises 12 and 13, write a piecewise function for the graph.

12.

In Exercises 14–17, write the absolute value function as a piecewise function.

14.
$$y = |x| + 3$$

15.
$$y = |x| - 2$$

16.
$$y = |x + 1|$$

17.
$$y = |x - 4|$$

Practice B

In Exercises 1-6, evaluate the function.

$$f(x) = \begin{cases} -x + 2, & \text{if } x < -3\\ 7, & \text{if } -3 \le x < 0\\ 3x - 1, & \text{if } x \ge 0 \end{cases}$$

1. f(-5)

2. f(4)

3. f(1)

4. f(0)

5. $f(-\frac{1}{2})$

- **6.** f(-3)
- 7. The total cost (in dollars) of ordering graduation announcements is represented by the piecewise function

$$c(x) = \begin{cases} 1.5x + 15, & \text{if } 0 \le x < 25\\ 1.25x + 15, & \text{if } 25 \le x < 40.\\ x + 15, & \text{if } x \ge 40 \end{cases}$$

- **a.** Determine the cost of ordering 25 announcements. Then determine the cost of ordering 24 announcements.
- **b.** For what number of announcements less than 25 is it financially better to purchase 25 announcements?
- **c.** For what number of announcements less than 40 is it financially better to purchase 40 announcements?

In Exercises 8-11, graph the function. Describe the domain and range.

8.
$$f(x) = \begin{cases} -x + 5, & \text{if } x < 5 \\ x - 5, & \text{if } x \ge 5 \end{cases}$$

9.
$$f(x) = \begin{cases} 2x - 3, & \text{if } x \le -1 \\ 2x + 2, & \text{if } x > -1 \end{cases}$$

10.
$$f(x) = \begin{cases} -x + 1, & \text{if } x < -3 \\ 4, & \text{if } -3 \le x < 0 \\ 3x + 4, & \text{if } x \ge 0 \end{cases}$$
 11. $f(x) = \begin{cases} x + 3, & \text{if } x < -2 \\ x - 2, & \text{if } -2 \le x < 2 \\ -2, & \text{if } x \ge 2 \end{cases}$

11.
$$f(x) = \begin{cases} x+3, & \text{if } x < -2 \\ x-2, & \text{if } -2 \le x < 2 \\ -2, & \text{if } x \ge 2 \end{cases}$$

In Exercises 12-15, write the absolute value function as a piecewise function.

12.
$$y = |x - 3|$$

13.
$$y = -2|x+4|$$

14.
$$y = -|x+1| + 3$$

15.
$$y = 5|x - 2| + 1$$

4.7 Enrichment and Extension

Greatest and Least Integer Functions

For any real number x, $f(x) = \lfloor x \rfloor$ denotes the greatest integer less than or equal to x. For any real number x, $f(x) = \lceil x \rceil$ denotes the least integer greater than or equal to x.

Example:

$$f(x) = 2\lfloor x \rfloor; \ f(x) = \begin{cases} 0, & \text{if } 0 \le x < 1 \\ 2, & \text{if } 1 \le x < 2 \dots \text{ and } f(x) = 2\lceil x \rceil = \begin{cases} 2, & \text{if } 0 < x \le 1 \\ 4, & \text{if } 1 < x \le 2 \dots \\ 6, & \text{if } 2 < x \le 3 \end{cases}$$

In Exercises 1–6, graph and write an equivalent piecewise function.

1.
$$f(x) = |x| + 3$$

2.
$$f(x) = [x + 3]$$

$$3. \quad f(x) = \lceil -x \rceil$$

$$4. \quad f(x) = -\frac{1}{2} \lfloor x \rfloor$$

5.
$$f(x) = |2x|$$

6.
$$f(x) = |3x| + 2$$

Name Date

4.7 Puzzle Time

What Do You Call A Nervous Zucchini?

Write the letter of each answer in the box containing the exercise number.

Evaluate the function.

$$f(x) = \begin{cases} 8x - 2, & \text{if } x < -4\\ 3x - 6, & \text{if } x \ge -4 \end{cases}$$

$$g(x) = \begin{cases} -2x + 5, & \text{if } x \le -3\\ 7, & \text{if } -3 < x < 1\\ 4x - 8, & \text{if } x \ge 1 \end{cases}$$

1.
$$f(-4)$$

2.
$$f(6)$$

3.
$$f(-6)$$

4.
$$f(0)$$

5.
$$f(-3)$$

6.
$$g(0)$$

7.
$$g(-5)$$

8.
$$g(1)$$

9.
$$g(4)$$

10.
$$g(-3)$$

Answers

V.
$$f(x) = \begin{cases} -3, & \text{if } x \le 0 \\ x+1, & \text{if } x > 0 \end{cases}$$

V.
$$f(x) = \begin{cases} -3, & \text{if } x \le 0 \\ x+1, & \text{if } x > 0 \end{cases}$$

G. $f(x) = \begin{cases} -2x+1, & \text{if } x < 0 \\ 2, & \text{if } x \ge 0 \end{cases}$

Write a piecewise function for the graph.

12.

5	2	3	8	11	6	12	4	10	7	9	1