7.4 Start Thinking

Rewrite the equation (x + 3)(x + 5) = 0 if x + 3 = aand x + 5 = b. What do you know to be true about either the value of a or the value of b? Explain what this tells you about the original equation.

Use your knowledge of the Zero-Product Property to write and solve two separate equations from the original equation. Explain the significance of the solutions obtained.

Solve.

 1. x + 4 = -9 2. $\frac{4}{3}x = -8$

 3. $\frac{1}{2}x = -16$ 4. x - 2 = 25

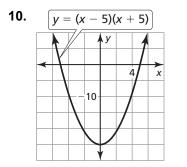
 5. $\frac{1}{3}x = 11$ 6. x - 4 = 8

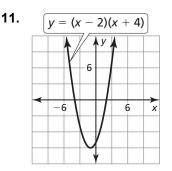
7.4 Cumulative Review Warm Up

Solve the inequality. Graph the solution.

 1. -7t > 14 2. $-12 \le -z$

 3. $\frac{n}{-4} \le 2$ 4. $-10 > -\frac{2}{3}m$


 5. $12 \ge 6f$ 6. $t - 8 \ge 36$


Practice A 7.4

In Exercises 1–9, solve the equation.

2. 6d(d+8) = 0 **3.** -3t(t+7) = 01. x(x-5) = 0**4.** (3x+6)(2x-10) = 0 **5.** (p+3)(5p+1) = 0 **6.** $(3q+2)^2 = 0$ **7.** $(y-10)^2 = 0$ **8.** t(t+4)(t-5) = 0 **9.** 7u(u-9)(2u-5) = 0

In Exercises 10 and 11, find the x-coordinates of the points where the graph crosses the x-axis.

In Exercises 12–14, factor the polynomial.

14. $8x^3 - 20x^2$ **12.** $4t^2 + 12t$ **13.** $10k^3 - 15k^2$

In Exercises 15–17, solve the equation.

15. $3t^2 - t = 0$

16. $5y^2 + 10y = 0$ **17.** $21n + 12n^2 = 0$

18. Describe and correct the error in solving the equation.

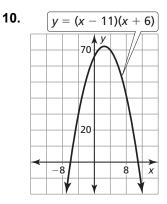
 $15t^{2} + 5t = 0$ 5t(3t) = 05t = 0 and 3t = 0 $t = 0 \qquad t = 0$

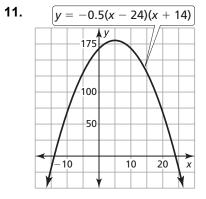
19. The height y of a jumping frog can be modeled by $y = -16x^2 + 4x$, where x is the time (in seconds) since the frog jumped from the ground. Find the roots of the equation when y = 0. Explain what the roots mean in this situation.

7.4

Practice B

In Exercises 1–9, solve the equation.


- 1. -3y(y-4) = 0 2. (d-6)(d+1) = 0


 3. (w+3)(w-5) = 0 4. (2-3x)(2+3x) = 0

 5. 9h(h-4)(3h+2) = 0 6. $k(k+2)^2 = 0$

 7. $(y-7)^2(y+9) = 0$ 8. (12-4n)(3n-5)(-n+2) = 0
- **9.** $(5-n)(3-\frac{1}{2}n)(n-4) = 0$

In Exercises 10 and 11, find the *x*-coordinates of the points where the graph crosses the *x*-axis.

In Exercises 12–14, factor the polynomial.

12. $36v^2 + 24v$ **13.** $3r^6 - 2r^5$ **14.** $18a^5 + 12a$

In Exercises 15–17, solve the equation.

15.
$$16h^2 - 8h = 0$$

16. $4w^2 = 12w$
17. $-32n = 8n^2$
18. Describe and correct
the error in solving
the equation.
16. $4w^2 = 12w$
17. $-32n = 8n^2$
18. $15t^2 = 5t$
 $3t = 1$
 $t = \frac{1}{3}$
The root is $t = \frac{1}{3}$.

19. Write a polynomial of degree 3 whose only roots are x = 2 and $x = \frac{2}{5}$. Is there another polynomial of degree 3 that has the same roots?

7.4 Enrichment and Extension

Long Division of Polynomials

Example: Divide $(x^2 - 3x + 5)$ by (x + 1).

Use the rule of long division to divide polynomials.

$$x - 4 + \frac{9}{x + 1}$$

$$x + 1)\overline{x^2 - 3x + 5}$$

$$-(x^2 + x)$$

$$-4x + 5$$
Multiply x by x + 1.
Subtract binomial and carry down the 5.
$$-(-4x - 4)$$
Multiply -4 by x + 1.
Subtract binomial to find remainder.

In Exercises 1–8, divide by using long division.

1. $(x^{2} + 5x + 2) \div (x - 1)$ 2. $(2x^{2} - x + 3) \div (x - 4)$ 3. $(x^{2} - 5x) \div (x - 3)$ 4. $(x^{2} - 7x + 10)(x - 2)^{-1}$ 5. $(4x^{2} + 6x + 1) \div (2x - 3)$ 6. $(x^{2} - 4)(x + 3)^{-1}$ 7. $(x^{3} + x^{2} - 4x + 5) \div (x - 2)$ 8. $(x^{3} + 5x + 3) \div (x - 2)$

Puzzle Time

Did You Hear About The ...

A	В	С	D	E	F
G	н	I	J	К	L
М	Ν	0	Ρ	Q	

Complete each exercise. Find the answer in the answer column. Write the word under the answer in the box containing the exercise letter.

	Solve the equation.	
0, 9 THAT	A. $y(y + 6) = 0$ B. $s(s - 1)$	SO
0, 2 OF	C. $11w(w-4) = 0$ D. $-2u(u)$ E. $(5r+3)(r+1) = 0$ F. $(j-7)$	$-\frac{1}{6}, 0$
–5, 9, 15 THE	G. $(8 - 16d)(8 + 16d) = 0$ H. $4p(3p - 1)(p + 12) = 0$	$-\frac{1}{2}, \frac{1}{2}$ A
7 DURING	1. $b(b-5)^2 = 0$	10 TRIP
- <u>12</u> , 0 A	J. $(18 - 2e)(2e + 10)(-e + 15) = 0$ K. $(12 - m)(9 + \frac{3}{4}m)(m - 12) = 0$	–6, 0 HORSE
0, 4 WAS	L. $6q^2 + q = 0$ M. $48a +$ N. $7n^2 = 49n$ O. $16t^2 -$	$20a^2 = 0$ 0, 7 DIARY
–12, 12 JOCKEY	P. $77c - 7c^2 = 0$	0, 5 THAT
–12, 0, <mark>1</mark> RACE	Q. The archway to the entrance of an art game modeled by $y = -\frac{1}{3}(x-5)(x+5)$, we are measured in feet. The <i>x</i> -axis represent	there x and y $-1, -\frac{3}{5}$ ents the floor.SLOW
0, 11 THE	Find the width of the arch at floor level	-14, 14 PENCIL

Solve the equation