

Complete the table.

Type of function	General form	Graph characteristics
linear		
exponential		
quadratic		

Sketch a graph for each type of function.

Describe one example of a real-life situation for each type of function.

Tell which quadrant or axis the point lies on.

1. (-1, 0)	2. (4, -6)	3. (-1, 3)	4. (1, 2)
5. (-3, 4)	6. (-2, 0)	7. (4, -5)	8. (6, -1)
9. (3, 3)	10. (5, -1)	11. (-3, 0)	12. (-1, -3)

8.6 Cumulative Review Warm Up

Write a system of linear equations that has the ordered pair as its solution.

- **1.** (4, 4) **2.** (-3 -13) **3.** (-1, 7)
- **4.** (16, -26) **5.** (1, 3) **6.** (-3, 2)

8.6 Practice A

In Exercises 1 and 2, tell whether the points appear to represent a *linear*, an *exponential*, or a *quadratic* function.

In Exercises 3–6, plot the points. Tell whether the points appear to represent a *linear*, an *exponential*, or a *quadratic* function.

- **3.** (-3, 4), (-2, 1), (-1, 0), (0, 1), (1, 4)
- **4.** (-4, 0), (-2, 1), (0, 2), (2, 3), (4, 4)
- **5.** (-3, -6), (-2, -1), (-1, 2), (0, 3), (1, 2)
- **6.** $\left(-2, \frac{1}{9}\right), \left(-1, \frac{1}{3}\right), (0, 1), (1, 3), (2, 9)$
- 7. The table shows the demand for a certain commodity (measured in thousands), where *x* is the number of the month of the year.

Number of month, x	1	2	3	4	5	6
Demand, y	5	2	1	2	5	10

- **a.** During what month is the demand at a minimum?
- **b.** Plot the points. Let *x* be the independent variable. Then determine the type of function that best represents this situation.
- **c.** Write a function in standard form that models the data.
- **d.** Use the function from part (c) to find the demand for the commodity (measured in thousands) during August.

8.6 Practice B

In Exercises 1 and 2, tell whether the points appear to represent a *linear*, an *exponential*, or a *quadratic* function.

In Exercises 3–6, plot the points. Tell whether the points appear to represent a *linear*, an *exponential*, or a *quadratic* function.

3. $\left(2, \frac{1}{9}\right)$, $\left(1, \frac{1}{3}\right)$, (0, 1), (-1, 3), (-2, 9) **4.** $\left(-1, 3\right)$, (0, 0), (1, -1), (2, 0), (3, 3) **5.** $\left(-4, -2\right)$, $\left(-2, -1\right)$, (0, 0), (2, 1), (4, 2)**6.** $\left(-3, -2\right)$, $\left(-2, -1\right)$, $\left(-1, 0\right)$, (0, 1), (1, 2)

In Exercises 7–10, tell whether the table of values represents a *linear*, an *exponential*, or a *quadratic* function.

11. Write a function that has constant second differences of 4.

8.6 Enrichment and Extension

Increasing and Decreasing Functions

When the *y*-values of a function increase as the *x*-values increase, the function is increasing, and when the *y*-values decrease as the *x*-values increase, the function is decreasing. However, at the maxima or minima of the graph, the function neither increases nor decreases. It is not a simple task to find the intervals on which a function increases or decreases, but the task is easier when given a graph.

Example: Consider the graph shown above.

The intervals on which the function increases are $(-\infty, -1) \cup (2, \infty)$.

The interval on which the function decreases is (-1, 2).

Notice the use of parentheses, because the endpoints of the intervals are not included. Also be aware that when giving increasing and decreasing intervals, only use the *x*-values.

Determine on what interval(s) the function is increasing or decreasing.

Where Does A Snake Go To Get A New Skin?

Write the letter of each answer in the box containing the exercise number.

Tell whether the points represent a *linear*, an *exponential*, or a *quadratic* model.

1. (-2, 6), (0, -4), (2, -6), (4, 0), (6, 14)F. Linear **G.** Exponential **H.** Ouadratic **2.** (-2, 14), (-1, 10), (0, 6), (1, 2), (2, -2)A. Linear **B.** Exponential **C.** Quadratic **3.** $\left(-1, \frac{2}{3}\right)$, (0, 2), (1, 6), (2, 18), (3, 54)S. Linear **T.** Exponential **U.** Ouadratic Write the function represented by the points. **4.** (-4, -7), (-2, -3), (0, 1), (2, 5), (4, 9)**E.** y = 2x + 1 **F.** $y = 2^x$ **G.** $v = 3x^2 + 3x + 4$ **5.** (1, 3), (2, 0), (3, -1), (4, 0), (5, 3)**O.** $v = x^2 - 6x + 8$ **M.** y = 8x + 6 **N.** $y = 8(6^x)$ **6.** $\left(-1, \frac{5}{2}\right)$, (0, 5), (1, 10), (2, 20), (3, 40)**R.** y = 5x + 2 **S.** $y = 5(2^x)$ **T.** $y = 5x^2 + 2x + 1$ **7.** (0, 3), (1, 0), (2, -1), (3, 0), (4, 3) **B.** y = 4x + 3 **C.** $y = 4(3^x)$ **D.** $v = x^2 - 4x + 3$

