9.1 Start Thinking

Simplify $\sqrt{360}$ using the steps below.

- **Step 1** Make a list of factors of 360.
- **Step 2** Find the greatest perfect square factor.
- **Step 3** Rewrite the radical as the product of the perfect square factor and its pair.
- **Step 4** Separate the product as two radicals.
- **Step 5** Simplify the square root radical.
- **Step 6** Write the answer as the product of a whole number and a radical.

9.1 Warm Up

Simplify.

1.
$$\sqrt{16}$$

2.
$$\sqrt{64}$$

3.
$$\sqrt{225}$$

4.
$$\sqrt{2025}$$

5.
$$\sqrt{57,600}$$

6.
$$\sqrt{36}$$

7.
$$\sqrt{400}$$

8.
$$\sqrt{4}$$

9.
$$\sqrt{3600}$$

9.1 Cumulative Review Warm Up

Determine whether the function represents exponential growth or exponential decay. Identify the percent rate of change.

1.
$$y = 5(0.7)^t$$

2.
$$y = 49(1.04)^t$$

3.
$$r(t) = 0.5(0.95)^t$$

4.
$$g(t) = 3(\frac{4}{5})^t$$

Practice A

In Exercises 1-9, simplify the expression.

1.
$$\sqrt{50}$$

2.
$$\sqrt{68}$$

3.
$$-\sqrt{98}$$

4.
$$\sqrt{\frac{9}{25}}$$

5.
$$-\sqrt{\frac{3}{64}}$$

6.
$$-\sqrt{\frac{x^2}{4}}$$

7.
$$\sqrt[3]{24}$$

8.
$$\sqrt[3]{-250}$$

9.
$$-\sqrt[3]{128x^4}$$

10. Describe and correct the error in simplifying the expression.

$$\sqrt[3]{16} = 4$$

In Exercises 11-13, write a factor that you can use to rationalize the denominator of the expression.

11.
$$\frac{3}{\sqrt{5}}$$

12.
$$\frac{1}{\sqrt{7n}}$$

13.
$$\frac{5}{\sqrt[3]{9}}$$

In Exercises 14–22, simplify the expression.

14.
$$\frac{3}{\sqrt{3}}$$

15.
$$\frac{9}{\sqrt{5}}$$

16.
$$\frac{\sqrt{3}}{\sqrt{50}}$$

17.
$$\frac{4}{\sqrt{w}}$$

18.
$$\frac{1}{\sqrt{5t}}$$

19.
$$\sqrt{\frac{2z^2}{7}}$$

20.
$$\frac{1}{\sqrt{6}-1}$$

21.
$$\frac{3}{4+\sqrt{2}}$$

22.
$$\frac{\sqrt{3}}{5-\sqrt{2}}$$

23. The average annual interest rate r (in decimal form) of a savings account is represented by the formula $r = \sqrt{\frac{V_2}{V_0}} - 1$, where V_0 is the initial investment and V_2 is the balance of the account after 2 years. Find the average annual interest rate r of a savings account with an initial investment of \$400 and a

balance of \$422 after 2 years.

9.1 Practice B

In Exercises 1-9, simplify the expression.

1.
$$\sqrt{54}$$

2.
$$\sqrt{25y^2}$$

3.
$$-\sqrt{18n^3}$$

4.
$$\sqrt{\frac{29}{100}}$$

5.
$$\sqrt{\frac{p^3}{49}}$$

6.
$$\sqrt{\frac{36}{9x^2}}$$

7.
$$\sqrt[3]{32q^2}$$

8.
$$\sqrt[3]{\frac{9d}{-8}}$$

9.
$$-\sqrt[3]{\frac{60x^2}{729y^3}}$$

10. Describe and correct the error in simplifying the expression.

$$\sqrt{\frac{30}{25}} = \sqrt{\frac{6}{5}}$$
$$= \frac{\sqrt{6}}{\sqrt{5}}$$

In Exercises 11–13, write a factor that you can use to rationalize the denominator of the expression.

11.
$$\frac{2}{\sqrt{7y}}$$

12.
$$\frac{8}{\sqrt[3]{k^2}}$$

13.
$$\frac{2}{3-\sqrt{6}}$$

In Exercises 14–22, simplify the expression.

14.
$$\frac{4}{\sqrt{3}}$$

15.
$$\frac{\sqrt{2}}{\sqrt{45}}$$

16.
$$\frac{1}{\sqrt{6t}}$$

17.
$$\sqrt{\frac{5h^2}{7}}$$

18.
$$\frac{\sqrt{27}}{\sqrt{2d^3}}$$

19.
$$\frac{25}{\sqrt[3]{4}}$$

20.
$$\frac{5}{7-\sqrt{2}}$$

21.
$$\frac{\sqrt{3}}{8+\sqrt{7}}$$

22.
$$\frac{\sqrt{5}}{\sqrt{5}-\sqrt{7}}$$

23. Use the special product pattern $(a - b)(a^2 + ab + b^2) = a^3 - b^3$ to simplify the expression $\frac{3}{\sqrt[3]{x} - 1}$.

9.1

Enrichment and Extension

Simplify Radicals With Imaginary Numbers

Think about the equation $x^2 = -1$ and notice that there is nothing that can make the equation true while using real numbers. It is not possible to substitute any real number for x that will yield a solution of -1. This is where imaginary numbers come in. Use the definition $i = \sqrt{-1}$ when simplifying radicals of negative numbers.

Example: Simplify $\sqrt{-120x^2y^3}$.

$$\sqrt{-120x^2y^3} = \sqrt{-1 \cdot 4 \cdot 30 \cdot x^2 \cdot y^2 \cdot y} = 2ixy\sqrt{30y}$$

Simplify the expression using the definition $i = \sqrt{-1}$.

1.
$$\sqrt{-80}$$

2.
$$\sqrt{-50xy^2}$$

3.
$$\sqrt{-216}$$

4.
$$\sqrt{-32w^2z^4}$$

5.
$$\sqrt{-175 pqr^6}$$

6.
$$\sqrt{-22x^3}$$

7.
$$\frac{\sqrt{-15}}{\sqrt{3}}$$

8.
$$\frac{2\sqrt{-21}}{\sqrt{7}}$$

9.
$$\frac{\sqrt{-2}}{\sqrt{5}}$$

10.
$$\sqrt{-8} \cdot \sqrt{5}$$

11.
$$\sqrt{3} \cdot \sqrt{-27}$$

12.
$$\sqrt{-2xy} \bullet \sqrt{30x^2y}$$

13.
$$\frac{-3\sqrt{-20}}{2\sqrt{8}}$$

14.
$$\frac{3}{\sqrt{-2}}$$

15.
$$\frac{-\sqrt{-12xy^3}}{\sqrt{6x^3y}}$$

Puzzle Time

What Do You Say When You Get Off A Boat?

Write the letter of each answer in the box containing the exercise number.

Simplify the expression.

1.
$$\sqrt{28}$$

2.
$$-\sqrt{75}$$

3.
$$\sqrt{63x^3}$$

4.
$$-\sqrt{\frac{36x^2}{121}}$$

5.
$$\sqrt{\frac{x^5}{64}}$$

6.
$$\sqrt[3]{-54}$$

7.
$$-\sqrt[3]{\frac{125x^2}{343y^3}}$$

8.
$$\sqrt[3]{\frac{729}{-1000x^3y^6}}$$

9.
$$\frac{6}{\sqrt{11}}$$

10.
$$\sqrt{\frac{8}{28}}$$

11.
$$\frac{\sqrt{12}}{\sqrt{5x^3}}$$

12.
$$\frac{2}{\sqrt{13}+1}$$

13.
$$\frac{\sqrt{7}}{9+\sqrt{7}}$$

14.
$$\sqrt{2} - 3\sqrt{17} + 7\sqrt{2}$$

15.
$$8\sqrt{24} - 6\sqrt{54}$$

16.
$$(\sqrt{10} + \sqrt{40})(\sqrt{50} - \sqrt{18})$$

17. The length of the board for a shelf is $(\sqrt{27} + \sqrt{3})$ feet. The width of the board is $2\sqrt{2}$ feet. Find the area of the board.

Answers

U.
$$-\frac{5\sqrt[3]{x^2}}{7y}$$

$$\mathbf{R.} \quad 3x\sqrt{7x}$$

$$\mathbf{N.} \quad \frac{x^2 \sqrt{x}}{8}$$

M.
$$-\frac{9}{10xy^2}$$

T.
$$8\sqrt{6}$$

Y.
$$\frac{6\sqrt{11}}{11}$$

c.
$$\frac{-1 + \sqrt{13}}{6}$$

H.
$$-2\sqrt{6}$$

o.
$$-5\sqrt{3}$$

E.
$$2\sqrt{7}$$

H.
$$12\sqrt{5}$$

c.
$$\frac{-1 + \sqrt{13}}{6}$$
 H. $-2\sqrt{6}$
o. $-5\sqrt{3}$ **E.** $2\sqrt{7}$
H. $12\sqrt{5}$ **A.** $\frac{-7 + 9\sqrt{7}}{74}$

F.
$$8\sqrt{2} - 3\sqrt{17}$$

R.
$$-3\sqrt[3]{2}$$

K.
$$\frac{\sqrt{14}}{7}$$

$$\mathbf{Y.} \quad \frac{2\sqrt{15x}}{5x^2}$$

U.
$$-\frac{6x}{11}$$