9.6 Start Thinking

Use a graphing calculator to graph each system of equations separately.

System 1 $y = x^{2} - 10$ y = 8System 2 y = 4x + 4 $y = -x^{2} + 4x + 4$ System 3 $y = -4x^{2} - 3x$ y = 6 + 2x

Determine which system has two solutions, which has one solution, and which has no solution. Explain.

Solve using any method.

 1. -y = -3x + 6 2. 5x + 4y = -17

 y = -3 y = 2x - 1

 3. 4x = -7y + 3 4. 6x + 4y = 24

 x = y - 2 y = 5x - 7

9.6 Cumulative Review Warm Up

Graph the linear equation. Identify the *x*-intercept.

 1. y = x - 5 2. y = 3x

 3. 2x - 2y = -2 4. v - 3x = 1

9.6 Practice A

In Exercises 1–4, solve the system by graphing.

 1. $y = 2x^2 - 3x - 1$ 2. $y = x^2 + 4x + 5$

 y = -x - 1 y = 2x + 1

 3. $y = -3x^2 + 6x$ $y = -\frac{1}{2}x^2 + 2x - 3$

 y = 3 y = -x + 1

In Exercises 5–8, solve the system by substitution.

5. y = x - 4 $y = x^2 - 3x - 4$ 7. $y = x^2 - 5x + 9$ y = 3x + 26. y = 8x - 8 $y = 2x^2$ 8. $y = -x^2 + 3$ y = 3x - 7

In Exercises 9–12, solve the system by elimination.

9. $y = x^{2} - 2x - 1$ y = -x + 110. $y = -4x^{2} + 8x - 8$ y = -8x + 411. $y = x^{2} + 4x + 5$ y = 2x - 412. $y = 2x^{2} + x - 6$ y = x + 2

In Exercises 13 and 14, use the table to describe the location of the zeros of the quadratic function *f*.

13.	x	-4	-3	-2	-1	0	1	14.	x	-1	0	1	2	3	4
	<i>f</i> (<i>x</i>)	-3	-1	0	0	-1	-3		<i>f</i> (<i>x</i>)	9	7	3	-2	-1	2

15. You shoot an arrow at a target, and your friend throws a javelin at the same target. The height of an arrow can be modeled by $h = -16t^2 + 20t + 14$. The height of the javelin can be modeled by h = 0.3t + 1. When will the arrow and the javelin be at the same height?

9.6 Practice B

In Exercises 1–4, solve the system by graphing.

 1. $y = 4x^2 + 2x - 1$ 2. $y = \frac{1}{3}x^2 - 6x + 5$

 y = -2x + 7 y = -5x + 5

 3. $y = 4x^2 - 8x$ 4. $y = 3x^2 - 2x + 8$

 y = -4 y = -x

In Exercises 5–8, solve the system by substitution.

5. y = 6x $y = x^{2} + 9$ 7. $y = -x^{2} - 2x + 4$ y = 3x - 106. y = 2x - 5 $y = 2x^{2} - 3x + 3$ 8. $y + 3 = x^{2}$ y = -3

In Exercises 9–12, solve the system by elimination.

9. $y = x^{2} - x - 1$ y = x - 210. $y = 2x^{2} + 2x$ y = -2x + 611. $y = x^{2} - 4x + 7$ y = -x + 1112. $y = -x^{2} + 1$ y = 2x - 2

In Exercises 13 and 14, use the table to describe the location of the zeros of the quadratic function *f*.

13.	x	-2	-1	0	1	2	3	14. x	ſ	-1	0	1	2	3	4
	f(x)	-3	-2	-2	0	1	2	f(x	(x)	3	2	-1	2	3	5

15. The graphs of $f(x) = 1.6x^2 + 2x - 0.6$ and $g(x) = -2.5x^2 - 2x - 4.2$ do not intersect. Change the value(s) of *c* in one or both functions *f* and *g* until the two graphs do intersect. Write your new system of equations and determine the intersection point(s), rounding to the nearest hundredth if necessary.

9.6 Enrichment and Extension

Challenge Non-Linear Systems

Solve using your knowledge of systems of non-linear equations.

- 1. A science class is studying gravity. The students launch an object up in the air at an initial velocity of 64 feet per second. The object is launched from a height of 6 feet off the ground. Its height H (in feet) after t seconds is given by the equation $H(t) = -16t^2 + v_o t + h_0$.
 - **a.** At what time is the object 54 feet off the ground?
 - **b.** How long, to the nearest hundredth of a second, does it take the object to hit the ground?
- 2. The profit a jacket company makes each day is modeled by the equation $P(x) = -x^2 + 120x - 2000$, where *P* is the profit and *x* is the price of each jacket sold. For what value(s) of *x* does the company make a profit of \$1200?
- 3. A small electronic company models its annual profits using the function $P(x) = x^2 + 20x 300$, where *P* represents the company's profit when *x* items are sold. Last year, its profits were \$197,625. How many items did the company sell?
- 4. You and your friends are trying to dunk a basketball. You need to jump at least 2.4 feet above the ground to reach the rim. Your jump is modeled by the function $H(t) = -18t^2 + 14t$.
 - **a.** Will you jump high enough to dunk the basketball?
 - **b.** When will you reach 2.4 feet?
- 5. A diver is jumping from a 12-foot diving board into the school pool. She jumps with an initial upward velocity of 6 feet per second. Use the formula $h(t) = -16t^2 + v_o t + h_o$, where h_o is the initial height, and v_o is the initial upward velocity.
 - **a.** At what time is the diver 10 feet above the water?
 - **b.** When will the diver hit the water?

Answers

Puzzle Time 9.6

Why Did The Acrobat Join The Circus?

Write the letter of each answer in the box containing the exercise number.

Solve the system by substitution.

1.	$y = 2x^2 - x + 3$ $y = x + 3$	2.	$y = x^2 + 6x + 5$ $y = -3x + 5$	L.	(2, 10), (6, 14)
3	$y = x + 3$ $y = -r^2 + 9r - 4$	4	$y = -x^2 + 10$	V.	(-2, 3), (10, 75)
0.	y = -x + 9x - 4 $y = x + 8$		y = -x + 10 $y + 2x = 7$	О.	(-5, -19), (7, 53)
5.	$y = x^2 - 6x - 2$	6.	$y = x^2 + 22x + 17$	L.	(-4, 36), (8, -24)
	y = -x - 8		y = 9x - 25	E.	(-10, -97), (5, 83)
Solve	e the system by eliminati	ion.			
7.	$y = x^2 + 4x - 24$	8.	$y = -3x^2 + x + 16$	т.	(0, 3), (1, 4)
	y = 6x + 11		y = 7x - 8	Α.	(-7, -88), (-6, -7
9.	$y = x^2 + 4x - 19$	10.	$y = x^2 + 17x - 27$	В.	$(-1, 9), (-\frac{1}{2}, \frac{31}{2})$
	y = -4x + 29		y = 12x + 23		(3 3)
11.	$y = 2x^2 - 22x + 1$	12.	$y = x^2 - 2x - 5$	Α.	(-9, 32), (0, 5)
	y = -7x + 9		y = 6x + 15	О.	$\left(-\frac{1}{2}, \frac{25}{2}\right), (8, -47)$
					$\langle 2 2 \rangle$

13. $y = 3x^2 + 6x + 12$ **14.** $y = x^2 - 9x - 16$ y = 2x + 11 y = -5x + 16

Т.	(0, 3), (1, 4)
Α.	(-7, -88), (-6, -79)
В.	$(-1, 9), (-\frac{1}{3}, \frac{31}{3})$
Α.	(-9, 32), (0, 5)
О.	$\left(-\frac{1}{2}, \frac{25}{2}\right), (8, -47)$
т.	(2,-10),(3,-11)
В.	(-12, 77), (4, 13)
I.	(-4, -36), (2, 6)
E.	(-1, 9), (3, 1)

