
10.1 Start Thinking

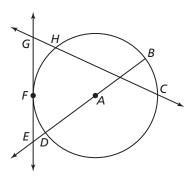
On a piece of graph paper, draw a circle that has a radius of 5 and center at (0, 0).

- **1.** Draw the segment that connects the points (3, 4) and (-4, -3) on the circle. Is this segment a diameter? Explain your answer.
- **2.** Draw the segment that connects the point (3, -4) with the origin. What is the name of this segment? Explain your answer.
- **3.** Is it possible to draw a line that intersects the circle only once? Is it possible to draw a line that intersects the circle more than twice? If so, add an example of these lines to your drawing.

10.1 Warm Up

Find the value of r.

10.1 Cumulative Review Warm Up


Determine if the segment lengths form a triangle. If so, is the triangle acute, obtuse, or right?

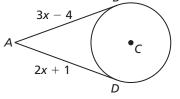
1. 3, 7, and 9**2.** 14, 7, and 20**3.** $\frac{9}{2}$, 6, and $\frac{15}{2}$ **4.** $\frac{11}{5}$, $\frac{7}{2}$, and $\frac{19}{5}$ **5.** 4, 4, and 6**6.** 10, 20, and 30

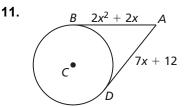
10.1 Practice A

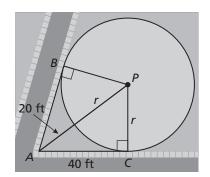
In Exercises 1–5, use the diagram.

- **1.** Name the circle.
- 2. Name two radii.
- **3.** Name two chords.
- 4. Name a secant.
- **5.** Name a tangent.

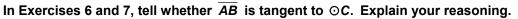
In Exercises 6 and 7, tell whether \overline{AB} is tangent to $\odot C$. Explain your reasoning.

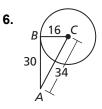


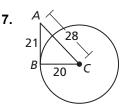

In Exercises 8 and 9, point *B* is a point of tangency. Find the radius r of $\odot C$.


In Exercises 10 and 11, points *B* and *D* are points of tangency. Find the value(s) of *x*.

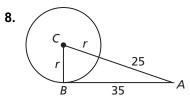
- **12.** Construct $\odot C$ with a 1-inch radius and a point *A* outside of $\odot C$. Then construct a line tangent to $\odot C$ that passes through *A*.
- **13.** Two sidewalks are tangent to a circular park centered at *P*, as shown.
 - **a.** What is the length of sidewalk \overline{AB} ? Explain.
 - **b.** What is the diameter of the park?

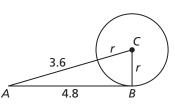



Copyright © Big Ideas Learning, LLC All rights reserved.



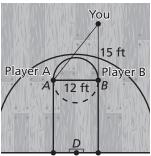
In Exercises 1–5, use the diagram.

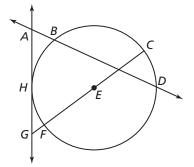

- **1.** Name two radii.
- 2. Name two chords.
- 3. Name a diameter.
- 4. Name a secant.
- **5.** Name a tangent and a point of tangency.



In Exercises 8 and 9, point *B* is a point of tangency. Find the radius r of $\odot C$.

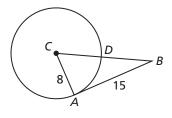
In Exercises 10 and 11, points *B* and *D* are points of tangency. Find the value(s) of *x*.

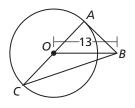

9.


12. When will two circles have no common tangents? Justify your answer.

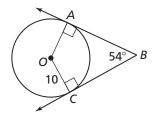
13. During a basketball game, you want to pass the ball to either Player A or Player B. You estimate that Player B is about 15 feet from you, as shown.

- **a.** How far away from you is Player A?
- **b.** How can you prove that Player A and Player B are the same distance from the basket?


E Basket C

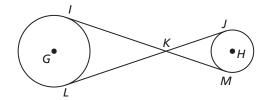

10.1 Enrichment and Extension

Lines and Segments That Intersect Circles


1. In the figure, \overline{AB} is tangent to circle C. Find the length of \overline{DB} .

2. In the figure, OB = 13 and \overline{AB} is tangent to circle O, whose diameter \overline{AC} has a length of 18. Find BC.

3. In the figure, OC = 10, $m \angle ABC = 54^\circ$, and \overrightarrow{BA} and \overrightarrow{BC} are tangents to circle *O*. Find *BC*.



4. Write a paragraph proof for the following.

Given: Circle G and circle H \overline{IM} and \overline{II} are common ton

 \overline{IM} and \overline{JL} are common tangents.

Prove: $\overline{IM} \cong \overline{JL}$

Why Did The Scientists Stay At The Math Teacher's House?

Write the letter of each answer in the box containing the exercise number.

Complete the sentence.

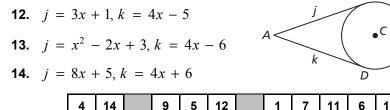
- **1.** Coplanar circles that intersect in one point are called circles.
- **2.** A chord is a segment whose are on a circle.
- **3.** A diameter is a(n) that contains the center of the circle.
- **4.** A(n) is a line that intersects a circle in two points.
- 5. A tangent is a line in the plane of a circle that intersects the circle in exactly one point, the point of
- 6. Coplanar circles that have a common center are called _____ circles.
- 7. A line or segment that is tangent to two coplanar circles is called a(n) _____ tangent.
- 8. In a plane, a line is tangent to a circle if and only if the line is to a radius of the circle at its endpoint on the circle.
- **9.** Tangent segments from a common external point are

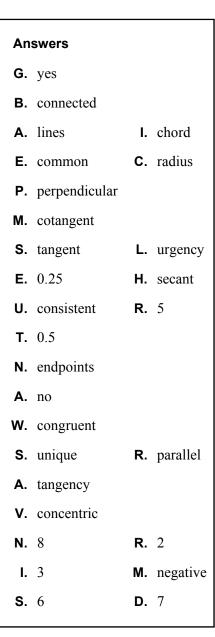
Find the indicated answers using the diagram.

- **10.** Given x = 28, y = 45, and z = 53, is *AB* tangent to circle *C*? Yes or no?

13

2


10


8

3

11. Find the radius *y* of circle *C*, given that x = 12 and z = y + 8.

B and D are points of tangency. Find the value of x using the diagram. В

