

In Section 1.5, you learned that a straight angle is an angle with a measure of 180° . Imagine the straight angle you are measuring is the *x*-axis of a coordinate plane and the origin is the center of the angle. If you "pull down" the negative *x*-axis side so that it is in Quadrant III, how could you find the measure of the angle going counterclockwise?

Solve.

- **1.** 4x 0 = 12 **2.** 7 = -11c 4
- **3.** 11 = -19x 8
- **5.** 3x + 2 + 8 = 2x 5
- **4.** 7 = 5n + 5 4n
- **6.** x + 5 + 6x + 17 = x 2

1.6 Cumulative Review Warm Up

Write the sentence as an equation and solve.

- **1.** The difference between a number and 14 is 8.
- **2.** Twice the difference between 5 times a number and 6 is 18.
- **3.** Fourteen is 7 times the difference between a number and 2.
- **4.** Four consecutive odd integers such that 2 times the last integer is 5 more than the sum of the first 3 integers.

1.6

Practice A

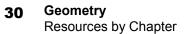
In Exercises 1–3, use the figures.

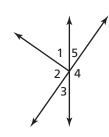
- **1.** Name a pair of adjacent complementary angles.
- 2. Name a pair of nonadjacent complementary angles.
- 3. Name a pair of nonadjacent supplementary angles.

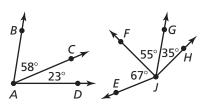
In Exercises 4 and 5, find the angle measure.

- **4.** $\angle 1$ is a complement of $\angle 2$, and $m \angle 2 = 36^{\circ}$. Find $m \angle 1$.
- 5. $\angle 3$ is a supplement of $\angle 4$, and $m \angle 4 = 75^{\circ}$. Find $m \angle 3$.

In Exercises 6 and 7, find the measure of each angle.


- 6. $\angle WXY$ and $\angle YXZ$ are supplementary angles, $m \angle WXY = (6x + 59)^\circ$, and $m \angle YXZ = (3x 14)^\circ$.
- 7. $\angle ABC$ and $\angle CBD$ are complementary angles, $m \angle ABC = (3x + 6)^\circ$, and $m \angle CBD = (4x 14)^\circ$.


In Exercises 8–10, use the figure.


- **8.** Identify the linear pairs that include $\angle 5$.
- **9.** Are $\angle 3$ and $\angle 5$ vertical angles? Explain your reasoning.
- **10.** Are $\angle 2$ and $\angle 4$ vertical angles? Explain your reasoning.

In Exercises 11–13, write and solve an algebraic equation to find the measure of each angle based on the given description.

- **11.** Two angles form a linear pair. The measure of one angle is 24° more than the measure of the other angle.
- 12. The measure of an angle is three times the measurement of its complement.
- **13.** The measure of one angle is 15 less than half the measurement of its supplement.
- **14.** The figure shows the design on an outdoor fence.
 - **a.** Name a pair of adjacent supplementary angles.
 - **b.** Name a pair of nonadjacent supplementary angles.
 - **c.** Identify the linear pairs that include $\angle 5$.
 - **d.** Find $m \angle 3$. Explain your reasoning.

1.6 Practice B

In Exercises 1–3, use the figures.

- **1.** Name a pair of adjacent complementary angles.
- 2. Name a pair of nonadjacent complementary angles.
- 3. Name a pair of nonadjacent supplementary angles.

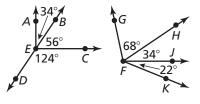
In Exercises 4 and 5, find the angle measure.

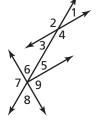
- **4.** $\angle 1$ is a complement of $\angle 2$, and $m \angle 2 = 71^{\circ}$. Find $m \angle 1$.
- 5. $\angle 3$ is a supplement of $\angle 4$, and $m \angle 4 = 26.7^{\circ}$. Find $m \angle 3$.

In Exercises 6 and 7, find the measure of each angle.

- 6. $\angle ABC$ and $\angle CBD$ are supplementary angles, $m \angle ABC = 7x^{\circ}$ and $m \angle CBD = 8x^{\circ}$.
- 7. $\angle WXY$ and $\angle YXZ$ are complementary angles, $m \angle WXY = (2x + 5)^\circ$, and $m \angle YXZ = (8x - 5)^\circ$.

In Exercises 8–11, use the figure.


- **8.** Identify the linear pair(s) that include $\angle 2$.
- **9.** Identify the linear pair(s) that include $\angle 8$.
- **10.** Are $\angle 6$ and $\angle 8$ vertical angles? Explain your reasoning.
- **11.** Are $\angle 7$ and $\angle 9$ vertical angles? Explain your reasoning.


In Exercises 12–14, write and solve an algebraic equation to find the measure of each angle based on the given description.

- **12.** The measure of an angle is 9 more than twice its complement.
- **13.** Two angles form a linear pair. The measure of one angle is four times the measure of the other angle.
- 14. Two angles form a linear pair. The measure of one angle is 51° more than $\frac{1}{2}$ the measure of the other angle.

In Exercises 15 and 16, tell whether the statement is *always*, *sometimes*, or *never* true. Explain your reasoning.

- **15.** The sum of the measures of a linear pair of angles is 90° .
- **16.** The sum of the measures of a pair of vertical angles is 180° .

1.6 Enrichment and Extension

Complementary and Supplementary Angles

A *radian* is a standard unit of measure used to measure angles. The conversion from degrees to radians is $180^\circ = \pi$ radians.

Example 1: Convert the sum of complementary and supplementary angles into radians.

Solution:
$$90^{\circ} \cdot \frac{\pi \text{ radians}}{180^{\circ}} = \frac{\pi}{2} \text{ radians}$$
 Complementary angles sum to $\frac{\pi}{2}$ radians.
 $180^{\circ} \cdot \frac{\pi \text{ radians}}{180^{\circ}} = \pi \text{ radians}$ Supplementary angles sum to π radians.

Example 2: Determine if the two angles are *complementary*, *supplementary*, or *neither*: $\frac{3\pi}{8}$ and $\frac{\pi}{4}$

Solution: $\frac{\pi}{4} \cdot \left(\frac{2}{2}\right) = \frac{2\pi}{8}$ $\frac{2\pi}{8} + \frac{3\pi}{8} = \frac{5\pi}{8}$ Add the two measurements.

The sum of $\frac{5\pi}{8}$ does not equal $\frac{\pi}{2}$ or π , so the final answer is *neither*.

Determine if the two angles are complementary, supplementary, or neither.

1.	$\frac{3\pi}{7}, \frac{4\pi}{7}$	2.	$\frac{\pi}{4}, \frac{\pi}{4}$	3.	$\frac{5\pi}{18}, \frac{5\pi}{9}$
4.	$\frac{\pi}{8}, \frac{7\pi}{8}$	5.	$\frac{\pi}{3}, \frac{\pi}{4}$	6.	$\frac{6\pi}{15}, \frac{\pi}{10}$

If possible, find the angle complementary and supplementary to the given angle.

7.
$$\frac{12\pi}{15}$$
 8. $\frac{23\pi}{42}$ **9.** $\frac{3\pi}{17}$

10.
$$\frac{2\pi}{5}$$
 11. $\frac{17\pi}{42}$ **12.** $\frac{7\pi}{8}$

Why Did The Student Eat His Math Exam?

А	В	С	D	E	F
G	н	I	J		

Complete each exercise. Find the answer in the answer column. Write the word under the answer in the box containing the exercise letter.

	Find the angle measure.	
152° NOTES	A. $\angle 1$ is a complement of $\angle 2$ and $m \angle 1 = 49^{\circ}$. Find $m \angle 2$.	36° SAID
58° KEYS	B. $\angle 3$ is a supplement of $\angle 4$ and $m \angle 3 = 119^{\circ}$. Find $m \angle 4$. C. $\angle 5$ and $\angle 6$ are vertical angles and $m \angle 5 = 33^{\circ}$. Find $m \angle 6$.	34° SAME
41° BECAUSE	 D. ∠7 and ∠8 are linear angles and m∠7 is 4 times that of m∠8. Find m∠8. 5. (1 is a sumplement of (2 and m (2 - 218) Find m (1 - 200)) 	40° OF
61° THE	E. $\angle 1$ is a supplement of $\angle 2$ and $m \angle 2 = 31^{\circ}$. Find $m \angle 1$. F. $\angle 3$ is a complement of $\angle 4$ and $m \angle 3 = 12^{\circ}$. Find $m \angle 4$.	92° CALLED
126° PIECE		65° GOT
134° DOOR	$(\frac{1}{2}x+20)^{\circ} (2x-10)^{\circ}$	33° TEACHER
78° WAS	G. Find $m \angle ABD$. H. Find $m \angle DBC$.	48° SHE
54° A		63° ARE
50° CAKE	$(1\frac{1}{4}x-10)^{\circ}$ $(\frac{3}{4}x+20)^{\circ}$ Z	149° IT
82° THE	I. Find $m \angle XYW$. J. Find $m \angle WYZ$.	173° HER