5.2 Start Thinking

Use a ruler and a protractor to measure the side lengths and angles of each triangle. What are the corresponding sides and angles? Describe how to get $\triangle DEF$ from $\triangle ABC$.

The triangles are similar. Use proportions to find *x*.

5.2 Cumulative Review Warm Up

1. Graph \overline{XY} with endpoints X(-2, 0) and Y(5, -6) and its image after the transformations.

Translation: $(x, y) \rightarrow (x, y - 3)$

Rotation: 90° counterclockwise about the origin

5.2 Practice A

1. In the figure, $ABCD \cong EFGH$. Identify all pairs of congruent corresponding parts. Then write another congruence statement for the polygons.

2. In the figure, $\triangle LMN \cong \triangle RST$. Find the values of x and y.

3. Show that the two quadrilaterals are congruent.

4. Find $m \angle T$. Explain your reasoning.

5. The congruence statements $\triangle ABC \cong \triangle DEF$, $\triangle ABC \cong \triangle EFD$, and $\triangle ABC \cong \triangle FDE$ are all valid. What must be true about $\triangle ABC$ and $\triangle DEF$?

5.2 Practice B

1. In the figure, $ABCDE \cong HIJFG$. Identify all pairs of congruent corresponding parts. Then complete the congruence statement: $ABCDE \cong G$ ______.

2. Find the values of *x*, *y*, and *z*.

3. Show that the two triangles are congruent.

4. In the figure, $RSTU \cong UVQR$. Find the values of x and y and $m \angle RST$. Explain your reasoning.

5. Draw a rectangle and label it *ABCD*. Draw diagonal \overline{AC} . Are the two triangles formed congruent? Explain.

5.2 Enrichment and Extension

Congruent Polygons

In Exercises 1 and 2, use the diagram to complete a two-column proof.

1. Given: $\angle ABD \cong \angle CDB$, $\angle ADB \cong \angle CBD$, $\overline{AD} \cong \overline{BC}$, and $\overline{AB} \cong \overline{DC}$

Prove: $\triangle ABD \cong \triangle CDB$

2. Given: $\overline{AB} \parallel \overline{DC}, \overline{AB} \cong \overline{DC}, E$ is the midpoint of \overline{AC} and \overline{BD} .

Prove: $\triangle AEB \cong \triangle CED$

3. In the diagram below, $\triangle ADB \cong \triangle CDA \cong \triangle CDB$.

- **a.** Is $\triangle ABC$ equilateral? Explain your reasoning.
- **b.** The sum of the measures of $\angle ADB$, $\angle CDA$, and $\angle CDB$ is 360°. Find $m \angle BDC$.
- **c.** Find $m \angle DBC$ and $m \angle DCB$.
- d. Explain why the angle measures in part (c) are equal.
- **e.** Explain why $\triangle ABC$ is equiangular.

Date _____

What Did The Grouchy Baker Make?

Write the letter of each answer in the box containing the exercise number.

Complete the statement.

- A rigid motion maps each part of a figure to a(n) ______ part of its image.
- 2. If two angles of one triangle are congruent to two angles of another triangle, then the _____ angles are also congruent.

R

7 C

Identify the congruent corresponding part, given that $\triangle TSR$ and $\triangle ABC$ are congruent.

- **3.** $\overline{SR} \cong$ _____
- **4.** ∠*C* ≅ ____
- **5.** $\overline{BC} \cong$ _____

Complete the exercise using the diagram above, given that $\triangle TSR$ and $\triangle ABC$ are congruent.

R

- **6.** $m \angle R = 19^{\circ}, m \angle B = 56^{\circ}; \text{ find } m \angle T.$
- 7. $m \angle R = 19^\circ, m \angle B = 56^\circ$; find $m \angle S$.
- 8. $m \angle R = 19^\circ, m \angle B = 56^\circ$; find $m \angle C$.
- **9.** BC = 11, TR = 20; find RS.

Answers							
K.	\overline{SR}						
н.	65						
N.	17°						
Α.	\overline{BC}						
D.	second						
т.	115°						
C.	$\angle R$						
О.	congruent						
М.	29						
C.	corresponding						
N.	15						
Y.	32						
E.	third						
R.	56°						
О.	79°						
В.	105°						
S.	19°						
Α.	11						

4	7	3	6	1	9	5	2	8