

A carpentry class is working on a project for the local childcare centers. The students are making wooden trees to go with the centers' train sets. They work from a sample that was cut from a three-inch tall triangular block of wood. The goal is to make more trees, proportional to the sample, but larger. Use the diagrams below to determine the lengths of the sides x and y of the triangles for trees made from four-inch and five-inch blocks of wood.



## 8.3 Cumulative Review Warm Up

Write an equation of the line passing through point *P* that is perpendicular to the given line.

**1.** P(0, -3), y = -5x **2.** P(4, 0), y = 9x + 8 **3.** P(-2, 4), 2x - 3y = -8**4.**  $P(-\frac{2}{3}, 1), y - 8 = -\frac{5}{2}(x + 3)$ 

## 8.3 **Practice A**

**1.** Determine whether  $\triangle ABC$ or  $\triangle DEF$  is similar to  $\triangle XYZ$ . 18 18 12 10 Ζ 25.2

In Exercises 2 and 3, find the value of x that makes  $\triangle PQR \sim \triangle JKL$ .



**4.** Verify that  $\Delta TUV \sim \Delta XYZ$ . Find the scale factor of  $\Delta TUV$  to  $\Delta XYZ$ .

 $\Delta TUV: TU = 15, UV = 21, TV = 18$ 

 $\triangle XYZ: XY = 35, YZ = 49, XZ = 42$ 

Date

In Exercises 5 and 6, show that the triangles are similar and write a similarity statement. Explain your reasoning.

6.



In Exercises 7–11, use the diagram to copy and complete the statement.

- 7.  $\triangle VWZ \sim$  8.  $m \angle VZY =$
- **9.**  $m \angle VWY =$  **10.**  $m \angle WXY =$
- **11.** *XY* =
- **12.** In the figure for Exercises 7–11, is  $\Delta WXZ \sim \Delta YVZ$ ? Explain your reasoning.
- **13.** Use the figure to write a two-column proof.

**Given:** 
$$\frac{PR}{QR} = \frac{TR}{SR}$$
 **Prove:**  $\overline{QS} \parallel \overline{PT}$ 

274 Geometry Resources by Chapter



Copyright © Big Ideas Learning, LLC All rights reserved. 8.3 Practice B

In Exercises 1 and 2, find the value of x that makes  $\triangle ABC \sim \triangle RST$ .



**3** Verify that  $\triangle JKL \sim \triangle PQR$ . Find the scale factor of  $\triangle JKL$  to  $\triangle PQR$ .

 $\Delta JKL: JK = 15, KL = 30, JL = 25$   $\Delta PQR: PQ = 12, QR = 24, PR = 20$ 

In Exercises 4 and 5, show that the triangles are similar and write a similarity statement. Explain your reasoning.



- 6.  $\triangle ABC$  has side lengths 42, 21, and 35 units. The shortest side of a triangle similar to  $\triangle ABC$  is 9 units long. Find the other lengths of the triangle.
- 7. Use the figure to find the values of x, y, and z that makes  $\triangle DEF \sim \triangle GHF$ .  $D = \begin{bmatrix} z \\ 16^{\circ} \end{bmatrix} = \begin{bmatrix} x - 5 \\ F \end{bmatrix}$



#### Use the figure to write a two-column proof



# 8.3 Enrichment and Extension

## **Proving Triangles Similar by SSS and SAS**

- **1.** In the figure,  $\triangle ABC \sim \triangle VWX$ .
  - **a.** Find the scale factor of  $\triangle VWX$  to  $\triangle ABC$ .
  - **b.** Find the ratio of the area of  $\triangle VWX$  to the area of  $\triangle ABC$ .



- 2. Given  $\triangle DEF \sim \triangle GHI$ ,  $m \angle D = 50^\circ$ ,  $m \angle G = (2x + 5y)^\circ$ ,  $m \angle I = (5x + y)^\circ$ , and that  $m \angle E = (102 - x)^\circ$ , find  $m \angle I$ .
- **3.** A portion of a water slide in an amusement park is shown. Find the length of  $\overline{EF}$ , if the posts and  $\overline{EF}$  form a right angle with the ground



- **4.** A streetlight is mounted at the top of a 15-foot pole. A 6-foot man walks away from the pole along a straight path. How long is his shadow when he is 40 feet from the pole?
- 5. Use the information and the diagram to prove the statement.



Date



## What Speaks Every Language?

Circle the letter of each correct answer in the boxes below. The circled letters will spell out the answer to the riddle.

#### Complete the sentence.

- 1. If the corresponding side lengths of two triangles are \_\_\_\_\_, then the triangles are similar.
- If an angle of one triangle is congruent to an angle of a second triangle and the lengths of the sides including these angles are proportional, then the triangles are \_\_\_\_\_\_.
- **3.** If two nonvertical lines are \_\_\_\_\_, then they have the same slope.
- **4.** If two \_\_\_\_\_\_ lines are perpendicular, then the product of their slopes is -1.

### Name the triangle that is not similar.



| т               | Α             | н          | I            | N            | к            | Е               |
|-----------------|---------------|------------|--------------|--------------|--------------|-----------------|
| $\triangle ABC$ | proportional  | concurrent | $\Delta VST$ | parallel     | $\Delta RKL$ | $\triangle ABF$ |
| R               | S             | С          | ο            | н            | 0            | В               |
| congruent       | perpendicular | similar    | equal        | $\Delta JKL$ | nonvertical  | $\triangle RST$ |